Python Tutorial 3

LING-381-Language Technology and LLMs

Instructor: Hakyung Sung September 18, 2025

Review: Tutorial 2

- Tokenization
- · Lemmatization
- · Frequency calculation
- Concordance

Review: Tokenization

- · What is tokenization?
- · What were the approaches that we've used in the tutorial?

Review: Tokenization-Exercise

Exercise

- Choose a language model from spaCy that you would like to experiment with (except for English).
- Test different sentences that you want to tokenize.
 - 1 # Put your output here

Review: Lemmatization

- · What is lemmatization?
- · What were the approaches that we've used in the tutorial?

Review: Lemmatization-Exercise

Exercise (in class)

• Check the spaCy lemmatizer with the new language model that you've chosen.

```
1 # load the model into a variable
2
3 # use the previous function to lemmatize the text
4
5
```

Review: Frequency calculation

Word frequency calculation is most often the very first step of the text analysis.

Review: Frequency calculation-Exercise

Exercise (in class)

```
1 # Download the `freq_test.txt` file from the tutorial
2
3 # Mount the downloaded file to the colab
4
5 # Example usage:
6 freq = corpus_freq("freq_test.txt")
7 print[[freq.most_common(10)]]
```

Review: Concordance

Concordancing is a method in corpus linguistics that involves identifying and displaying occurrences of a target linguistic item along with its surrounding context.

Let's check the exercise together!

Goal for today's class

- Done with Tutorial 2 → Work with Collocation (Bonus 2 points)
- Want to fix your previous submission Tutorial 2 → Redo and resubmit
- Want to work on Tutorial 2 → Do and Submit

Submission deadline: Tomorrow 11:59PM

 What: Collocations = word pairs/phrases that co-occur more than chance

- What: Collocations = word pairs/phrases that co-occur more than chance
- Why: Studying collocations via n-gram analysis helps to (1) assess native-like fluency (e.g., make a decision vs. do a decision) and (2) extract informative n-grams for information retrieval.

- What: Collocations = word pairs/phrases that co-occur more than chance
- Why: Studying collocations via n-gram analysis helps to (1) assess native-like fluency (e.g., make a decision vs. do a decision) and (2) extract informative n-grams for information retrieval.
- · Break down steps:

- What: Collocations = word pairs/phrases that co-occur more than chance
- Why: Studying collocations via n-gram analysis helps to (1) assess native-like fluency (e.g., make a decision vs. do a decision) and (2) extract informative n-grams for information retrieval.
- · Break down steps:
 - · Tokenize the text

- What: Collocations = word pairs/phrases that co-occur more than chance
- Why: Studying collocations via n-gram analysis helps to (1) assess native-like fluency (e.g., make a decision vs. do a decision) and (2) extract informative n-grams for information retrieval.
- Break down steps:
 - · Tokenize the text
 - Generate word frequency across the entire corpus

- What: Collocations = word pairs/phrases that co-occur more than chance
- Why: Studying collocations via n-gram analysis helps to (1) assess native-like fluency (e.g., make a decision vs. do a decision) and (2) extract informative n-grams for information retrieval.
- · Break down steps:
 - · Tokenize the text
 - · Generate word frequency across the entire corpus
 - Generate word frequency within contexts

- What: Collocations = word pairs/phrases that co-occur more than chance
- Why: Studying collocations via n-gram analysis helps to (1) assess native-like fluency (e.g., make a decision vs. do a decision) and (2) extract informative n-grams for information retrieval.
- · Break down steps:
 - · Tokenize the text
 - Generate word frequency across the entire corpus
 - Generate word frequency within contexts
 - Calculate association strength between word pairs using statistical measures (e.g., Mutual information [MI])